INTERSNP
–
Genome-wide Interaction Analysis

Christine Herold
Tim Becker
Dmitriy Drichel
André Lacour
Tatsiana Vaitsiakhovich
Vitalia Schüller

Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
German Center for Neurodegenerative Diseases
Bonn

Institute for Medical Biometrics, Informatics and Epidemiology (IMBIE)
University of Bonn

Bonn, July 2, 2015
Contents

1 Introduction 2

2 Using INTERSNP 3
 2.1 Usage ... 3
 2.1.1 Command line 3
 2.1.2 Selection file 3
 2.2 Input files ... 4
 2.2.1 SNP/Pedigree/Genotype files 4
 2.2.2 Annotation file 5
 2.2.3 Pathway file 5
 2.2.4 Covariate file 6
 2.2.5 Model file 6
 2.2.6 Combi file 7
 2.2.7 SNP file .. 7
 2.3 Options ... 8
 2.4 Output files ... 14
 2.4.1 Output single marker 14
 2.5 Produce SNP-Proxy-Files for Meta-Analysis with YAMAS 16

3 Examples 18
 3.1 Genome-wide Interaction Analysis with Pre-test 18
 3.2 Strategy I ... 18
 3.3 Strategy II .. 18
 3.4 Strategy III ... 19
 3.5 Strategy IV .. 19
 3.6 Strategy V ... 19
 3.7 Genome-wide Haplotype Analysis 20

4 Tests in INTERSNP 21
 4.1 Single-marker tests 21
 4.2 Two- and three-marker analysis 21
 4.2.1 χ²-test for full genotype contingency table (TEST 1) 21
 4.2.2 Test for interaction using a log-linear model (TEST 2) 21
 4.2.3 Logistic regression (TESTS 3–12) 22
 4.2.3.1 Parameter coding 22
 4.2.3.2 Likelihoods 22
 4.2.4 Linear regression 23
 4.2.4.1 Tests (2 SNPs) 23
 4.2.4.2 Tests (3 SNPs) 23
 4.2.4.3 X-chromosome 24
 4.2.4.4 Covariates .. 24
 4.2.4.5 User-defined regression models 24
CONTENTS

4.2.5 Pre-tests .. 24
 4.2.5.1 Pre-test allelic interaction (logistic regression) 24
 4.2.5.2 Pre-test genotypic interaction (logistic regression) 24
 4.2.5.3 Pre-test genotypic interaction (linear regression) 25
 4.2.5.4 Pre-test allelic interaction (linear regression) 25

5 Case-only analysis ... 26
 5.1 Case-only allelic interaction test (TEST 15) 26
 5.2 Case-only SNP-SNP interaction test (TEST 16) 27
 5.3 Selection file for case-only analysis 27

6 Pathway association analysis 28
 6.1 Pathway scores ... 29
 6.2 Simulation .. 29
 6.3 Selection file PAA ... 30

7 Test for Supra-Multiplicativity of SNP Sets 31
 7.1 Selection file and output 31

8 Stratified analysis .. 32

9 INTERSNP-RARE: Genome-Wide Rare Variant Analysis 34
 9.1 Introduction ... 34
 9.2 Options .. 36
 9.3 Statistical Tests .. 38
 9.3.1 FR ... 38
 9.3.2 CMAT .. 38
 9.3.2.1 Weights ... 39
 9.3.3 COLL ... 39
 9.3.3.1 Odds Ratios ... 40
 9.3.4 REG ... 40
 9.3.5 FRACREG ... 40
 9.3.6 COLLREG .. 40
 9.4 Variable Threshold ... 41
 9.5 Rare Pretests ... 41
 9.6 Binning Methods .. 42
 9.6.1 Count-based Binning 42
 9.6.2 User-Supplied Intervals 42
 9.6.3 Interval Modification 43
 9.6.3.1 Merging of Input Intervals 43
 9.6.3.2 Flanking ... 43
 9.6.3.3 Close Gaps .. 43
 9.6.3.4 Concatenating Intervals 43
 9.6.4 Size of Bins: Quality Control 43
 9.6.4.1 Filter Small Bins 43
 9.6.4.2 Maximum Number of Rare Variants 43
 9.7 Imputation of Minor Allele Frequencies for Missing Genotypes . 43
 9.8 Output .. 44
 9.8.1 Association Testing Results: *Rare.txt 44
 9.8.2 Modified Interval File: *_modified.txt 44

Bibliography ... 45
Chapter 1

Introduction

INTERSNP (Herold et al., 2009) is a software for GWAS multi-marker analysis, especially interaction analysis (GWIA), of case-control SNP data and quantitative traits. SNPs are selected for joint analysis using a priori information. Sources of information to define meaningful strategies can be statistical evidence (single marker association at a moderate level, computed on the fly from the data) and genetic/biologic relevance (genomic location, function class or pathway information). Our software product implements a logistic regression framework as well as log-linear models for joint analysis of multiple SNPs, automatic handling of SNP annotation and pathway information and methods to account for multiple testing, in particular, Monte-Carlo simulations (MC-simulations) to judge genome-wide significance. Additionally, different pathway association tests are provided and it is also possible to perform a genome-wide haplotype analysis (GWHA).

NOTE: Single-marker analysis is always carried out by default.
Chapter 2

Using INTERSNP

2.1 Usage

2.1.1 Command line

INTERSNP is written in C/C++ and can be operated from the command line.

Compile: g++ intersnp.cpp -o intersnp -O3.

Compile parallel version: g++ intersnp.cpp -o intersnpParallel -O3 -fopenmp.

There are two main loops which can be parallelized in INTERSNP. To compile a parallel version of INTERSNP it's necessary to modify the source code and to change either

```
#define PARALLELN 0
```

or

```
#define PARALLELA 0
```

In order to parallelize the \(n \)-loop used for MC-simulations, in particular pathway association analysis, change "#define PARALLELN 0" to "#define PARALLELN 1". To do a full Genome-wide interaction analysis (GWIA) it's recommended to parallelize the A-loop, change "#define PARALLELA 0" to "#define PARALLELA 1".

Run: ./intersnp selectionfile.txt

Run parallel version: ./intersnpParallel selectionfile.txt

2.1.2 Selection file

Various analysis options (statistical test, priorities, ...) can be specified by the user in a selection file. The file consists of three columns: keyword, parameter, and optionally comments, and is separated by whitespaces (tab, blank). Further columns are ignored.

To get familiar with the selection file, first of all a short example is introduced which will be described in detail.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Parameter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPED</td>
<td>./test.tped</td>
<td>// path to the .tped file</td>
</tr>
<tr>
<td>TFAM</td>
<td>./test.tfam</td>
<td>// path to the .tfam file</td>
</tr>
<tr>
<td>ANNOTATIONFILE</td>
<td>./annotation_file.txt</td>
<td>// path to the annotation file</td>
</tr>
<tr>
<td>HWE_P_CASE</td>
<td>0.001</td>
<td>// QC-threshold for HWE in cases</td>
</tr>
<tr>
<td>HWE_P_CONTROL</td>
<td>0.01</td>
<td>// QC-threshold for HWE in controls</td>
</tr>
<tr>
<td>MRDIFF</td>
<td>1</td>
<td>// QC-threshold missing rate (mr): individuals and SNPs \ worse than the average mr + MRDIFF will be deleted</td>
</tr>
<tr>
<td>MAF</td>
<td></td>
<td>// QC-threshold minor allele frequency</td>
</tr>
<tr>
<td>SINGLE_MARKER</td>
<td>1</td>
<td>// Armitage’s trend test</td>
</tr>
<tr>
<td>TWO_MARKER</td>
<td>1</td>
<td>// two-marker analysis</td>
</tr>
</tbody>
</table>
TEST 5 // logistic regression model:
 test for additive interaction
SINGLETOP 50000 // top 50000 single-marker results
M_WITH_SINGLETOP 2 // all pairs of SNPs which are among
 the top 50000 single-marker results
GENETIC_IMPACT 3 // genetic impact: within coding region
M_WITH_GENETIC_IMPACT 2 // all pairs of SNPs which lie in a
 coding region of a gene
OUTPUTNAME ./myproject/test // specify the output name

TPED is the path to the .tped input file and TFAM is the path to the .tfam file. In this example
we also use an annotation file (ANNOTATIONFILE) to get the genetic information. After the input
files we define some quality control (QC) criteria to delete individuals and SNPs not satisfying the
QC-criteria of HWE_P_CASE and HWE_P_CONTROL, MRDIFF (missing rate) and MAF (minor allele fre-
quency). Every analysis starts with a single-marker test which can be specified by SINGLEMARKER.
In our example we use Armitage's trend test (SINGLEMARKER 1). Furthermore, we would like to do
a two-marker analysis, so we select TWO_MARKER 1 and choose TEST 5, which is a test for additive
interaction (see section Model table for case-control data4.1). To reduce the number of tests we
use the statistic and genetic criteria. SINGLETOP 50000 and M_WITH_SINGLETOP 2 means that we
analyze only pairs of SNPs which are among the top 50000 single-marker results. In addition, these
pairs should also be in a coding region of a gene (GENETIC_IMPACT 2, M_WITH_GENETIC_IMPACT
3). Finally, we specify the output name (OUTPUTNAME).

2.2 Input files

2.2.1 SNP/Pedigree/Genotype files

Possible data input formats are the PLINK (Purcell et al., 2007) formats (.ped/.map; .tped/.tfam;
.bed/.bim/.fam).

For instance the .tped file (TPED) contains SNP and genotype information, where each row rep-
resents a SNP and two columns represent genotypes per individual. The first four columns are
chromosome, marker ID, genetic distance and base pair position.

```
   1 6 rs8466895  0 37354 T T T T T T C C C T
   1 6 rs216590  0 41263 G A G A A A A A G A
   1 6 rs216596  0 45320 A G G G G G G A G
   1 6 rs2541594 0 45444 C T T T C T C C C C
   1 6 rs8466 0 49427 T T T T T T C C C T
   1 6 rs216590  0 52259 G A G A A A A A G A
   ...
```

NOTE: To improve running time it it recommended to sort the file by chromosome and position.
The .tfam file (TFAM) contains family information, each row represents a person. To create a .tfam
file use the first six columns of a .ped file: Family ID, Individual ID, Father, Mother, Sex and Affection
status.

```
c01  c01  0  0  1  1
ca2  c02  0  0  2  1
...
c01  c01  0  0  2  2
c01  c01  0  0  2  2
```

...
For more details on the data formats visit the PLINK website http://pngu.mgh.harvard.edu/ purcell/plink/data.shtml.

2.2.2 Annotation file

To work with genetic criteria a SNP annotation file (`ANNOTATIONFILE`) is needed. We use the same format as in the Illumina Human610 chip annotation file. The first columns represent rs number, chromosome, base pair position and genome_build number; all the other columns show detailed information. For our different categories the following columns are important:

- **1st column:** rs_number;
- **2nd:** chromosome;
- **5th column:** gene_id;
- **8th column:** gene_location: coding, intron, 3UTR, 5UTR, UTR, flanking_3UTR, flanking_5UTR;
- **9th column:** location_relative_to_gene: numbers below zero: distance to the nearest gene, location within a gene: [461/456], since the exact position is not used you may write [1/1] if the SNP is in the gene, but not in the intron(!);
- **10th column:** SNP coding-status: -1, NULL, SYNON, NONSYNON.

The file can be downloaded from our homepage (http://intersnp.meb.uni-bonn.de/Downloads).

```plaintext
name;chr;coordinate;genome_build;gene_symbol;gene_id;accession;location;
location_relative_to_gene;coding_status;amino_acid_change;id_with_mouse;
phast_conservation
rs1235460;1;10004;36.2;LOC653635;653635;XR_017611.1;intron;-1762;
NULL;NULL;NULL
rs2691310;1;46844;36.2;LOC642894;642894;XR_016145.1;flanking_5UTR;-672;
NULL;NULL;NULL
rs2531266;1;59415;36.2;DR4F5;79501;NM_001005484.1;coding;[461/456];
SYNON;A154A (NP_001005484.1);0.64;0.979
rs4124251;1;97215;36.2;LOC727901;727901;XR_015157.1;3UTR;[3300/491];
NULL;NULL;NULL
rs8179466;1;224176;36.2;LOC728481;728481;XR_015292.1;intron;-42;NULL;
NULL;NULL;NULL
...
```

NOTE: GENETIC_IMPACT and M_WITH_GENETIC_IMPACT have to be selected.

NOTE: To improve running time it is recommended to sort the file by chromosome and position.

2.2.3 Pathway file

To include pathway information a pathway file (`PATHWAYFILE`) is needed. A file containing KEGG (Kanehisa, et al.), (O’Dushlaine et al., 2009) pathways\(^1\) can be downloaded from our homepage (Downloads). We use the KEGG_2_SNPs_229.txt file with genes annotated by us. The columns present pathway name, rs number and gene.

```plaintext
Pathway rsNo Gene
hsa00010 rs61487361 HK2
hsa00010 rs2286168 ALDH3B1
hsa00010 rs41275697 ADHIB
hsa00010 rs191970 PGM1
hsa00010 rs7583259 GALM
...
```

\(^1\)We wish to thank Colm O’Dushlaine (codushlaine@gmail.com) for providing the KEGG pathway file
NOTE: PATHWAY has to be selected (1).
NOTE: To improve running time it is recommended to sort the file by pathway name.

2.2.4 Covariate file

To include own covariates into the analysis use the covariate file (COVARIATEFILE). The first two columns represent Family ID and Person ID and then up to 10 covariates are allowed.

<table>
<thead>
<tr>
<th>FID</th>
<th>PID</th>
<th>COV1</th>
<th>COV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>co1</td>
<td>co1</td>
<td>1.31</td>
<td>5.75</td>
</tr>
<tr>
<td>co2</td>
<td>co2</td>
<td>7.24</td>
<td>5.97</td>
</tr>
<tr>
<td>ca1</td>
<td>ca1</td>
<td>1.85</td>
<td>5.12</td>
</tr>
<tr>
<td>ca2</td>
<td>ca2</td>
<td>2.36</td>
<td>6.42</td>
</tr>
</tbody>
</table>

NOTE: Covariates are selected with the COVARIATES keyword. If all covariates shall be used, write 1-10; (semicolon is important)

NOTE: Missing data value is "-" or "x".

2.2.5 Model file

For user-defined logistic/linear regression models that are not included in the list of tests, the model file (MODELFILE) is needed. The first column presents the name of the parameter followed by 0/1 indicators for the first and the second likelihood. The indicators define which of the compared likelihoods L1 and L2 are used.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x1D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x2D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1x2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1x2D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1Dx2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1Dx2D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x3D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1x3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1x3D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1Dx3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1Dx3D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x2x3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x2x3D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x2Dx3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x2Dx3D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1x2x3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1x2x3D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1x2Dx3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1x2Dx3D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1Dx2x3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1Dx2x3D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1Dx2Dx3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x1Dx2Dx3D</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: TEST has to be set to M.
2.2 Input files

2.2.6 Combi file

To analyse only user-specified SNP pairs or triples a combi file (COMBILIST) is required. Each row represents one combination.

```
rs11248850 rs7190878
rs7404049  rs4984707
rs11649498 rs1040499
...
```

NOTE: COMBILIST has to be set to 1.

2.2.7 SNP file

To analyse all combinations of user-specified SNPs from the .tped file a SNP file (SNPFILE) is required. Each row represents one SNP.

```
rs11248850
rs7190878
rs7404049
rs4984707
rs11649498
...
```

NOTE: SNPFILE has to be set to 1.
2.3 Options

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Example</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE</td>
<td>Path to SNP/Pedigree/Genotype files. The input format is the standard PLINK format (.ped/.map) (section :TP 2.2.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFILE</td>
<td>Path to SNP/Pedigree/Genotype files. The input format is the transposed PLINK format (.tped/.tfam) (section :TP 2.2.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFILE</td>
<td>Path to SNP/Pedigree/Genotype files. The input format is the binary PLINK format (.bed/.bim/.fam) section :TP 2.2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAM / BFAM</td>
<td>./test.fam</td>
<td>./test.fam</td>
<td>Path to the .fam file</td>
</tr>
<tr>
<td>MAP</td>
<td>./test.map</td>
<td>./test.map</td>
<td>Path to the .map file</td>
</tr>
<tr>
<td>PED</td>
<td>./test.ped</td>
<td>./test.ped</td>
<td>Path to the .ped file</td>
</tr>
<tr>
<td>TPED</td>
<td>./test.tped</td>
<td>./test.tped</td>
<td>Path to the .tped file</td>
</tr>
<tr>
<td>BMAP / BIM</td>
<td>./test.bim</td>
<td>./test.bim</td>
<td>Path to the .bim file</td>
</tr>
<tr>
<td>BED / BPED</td>
<td>./test.bed</td>
<td>./test.bed</td>
<td>Path to the .bed file</td>
</tr>
<tr>
<td>ANNOTATIONFILE</td>
<td>./annotationfile.txt</td>
<td></td>
<td>Path to the annotation file (section :TP 2.2.2). Only needed if genetic criteria is used</td>
</tr>
<tr>
<td>PATHWAYFILE</td>
<td>./pathwayfile.txt</td>
<td></td>
<td>Path to the pathway file (section :TP 2.2.3)</td>
</tr>
<tr>
<td>COVARIATEFILE</td>
<td>./covariatefile.txt</td>
<td></td>
<td>Path to the covariate file (section :TP 2.2.4). Only needed if covariates are included into the analysis</td>
</tr>
</tbody>
</table>

NOTE: Covariates are selected with the COVARIATES keyword (see below). If all covariates are to be used, write 1-10; otherwise, write the names of the covariates you want to use. Missing data value is “–” or “x”.

NOTE: To improve running time it is recommended to sort the file by chromosome and position.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODELFILE</td>
<td>./modelfile.txt</td>
<td>Path to the model file (sections :TP 2.2.5, :TP 4.2.3). Only needed for user-defined logistic regression models that are not included in the list of tests. NOTE: TEST has to be switched on.</td>
</tr>
<tr>
<td>COMBIFILE</td>
<td>./combifile.txt</td>
<td>Path to the combi file (section :TP 2.2.6). NOTE: COMBILIST has to be put on.</td>
</tr>
<tr>
<td>SNPFILE</td>
<td>./snpfile.txt</td>
<td>Path to the SNP file (section :TP 2.2.7). NOTE: SNPLIST has to be put on.</td>
</tr>
</tbody>
</table>

Selection/ reduction of data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNPLIST</td>
<td>0</td>
<td>Only SNPs from the SNP file will be analyzed: 1=yes, 0=no</td>
</tr>
<tr>
<td>COMBILIST</td>
<td>0</td>
<td>Only SNPs pairs/triples from the combi file will be analyzed: 1=yes, 0=no</td>
</tr>
<tr>
<td>ONLY_MALE</td>
<td>0</td>
<td>Only male persons will be analyzed: 1=yes, 0=no</td>
</tr>
<tr>
<td>ONLY_FEMALE</td>
<td>0</td>
<td>Only female persons will be analyzed: 1=yes, 0=no</td>
</tr>
<tr>
<td>POSCHOICE</td>
<td>chr4;</td>
<td>Selection of certain regions (ONLY the stated regions will be analyzed)</td>
</tr>
<tr>
<td></td>
<td>chr12,123000-160000; chr24;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: Use the notation shown in the example</td>
</tr>
<tr>
<td>NEGCHOICE</td>
<td>chr4;</td>
<td>Exclusion of certain regions (The stated regions will NOT be analyzed)</td>
</tr>
<tr>
<td></td>
<td>chr12,123000-160000; chr24;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: Use the notation shown in the example</td>
</tr>
<tr>
<td>MATCHINGCHOICE</td>
<td>chr4;</td>
<td>Selection of certain regions for pairwise matching</td>
</tr>
<tr>
<td></td>
<td>chr12,123000-160000; chr24;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: Use the notation shown in the example</td>
</tr>
<tr>
<td>QT</td>
<td>0</td>
<td>Use the analysis of quantitaive traits: 1=yes, 0=no (case-control)</td>
</tr>
<tr>
<td>MISSING_PHENO</td>
<td>-9</td>
<td>Specify the missing phenotype value</td>
</tr>
<tr>
<td></td>
<td>-99/0</td>
<td>By default it is -99 for QT 1, and is 0 for QT 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: When using QT 1, make sure that the missing phenotype value is defined</td>
</tr>
<tr>
<td>LD_DISTANCE</td>
<td></td>
<td>Define the LD distance between SNP pairs, in base pairs (bp)</td>
</tr>
</tbody>
</table>
Quality control

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWE_P_CASE</td>
<td>0.001</td>
<td>QC-threshold for HWE in cases (p-value cutoff)</td>
</tr>
<tr>
<td>HWE_P_CONTROL</td>
<td>0.01</td>
<td>QC-threshold for HWE in controls (p-value cutoff)</td>
</tr>
<tr>
<td>MRDIFF</td>
<td>0.02</td>
<td>QC-threshold missing rate (mr): individuals and SNPs worse than the average mr + MRDIFF will be deleted (iterative algorithm)</td>
</tr>
<tr>
<td>MAF</td>
<td>0</td>
<td>SNPs with lower MAF will be deleted</td>
</tr>
<tr>
<td>DOIBS</td>
<td>0</td>
<td>Calculate average IBS-value of all possible pairs: 1=yes and stop afterwards, 2=yes and proceed with analysis, 0=no</td>
</tr>
<tr>
<td>IBS_SD_RELATIVES</td>
<td>4.0</td>
<td>Limit in standard deviations for high/low-IBS. Pairs that exceed this limit are considered to be relatives</td>
</tr>
<tr>
<td>IBS_SD_OUTLIER</td>
<td>4.0</td>
<td>Limit in standard deviations. People whose low-IBS-count exceed this limit are considered to be outlier</td>
</tr>
</tbody>
</table>

Single- and multi-marker tests

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE_MARKER</td>
<td></td>
<td>1=Armitage’s trend test, 2=genotype test with 2 d.f., 3=logistic regression with 1 d.f., 4=logistic regression with 2 d.f.</td>
</tr>
<tr>
<td>TWO_MARKER</td>
<td>0</td>
<td>Change parameter from 0 to 1 to perform two-marker analysis NOTE: It’s not possible to select two-marker and three-marker analysis together</td>
</tr>
<tr>
<td>THREE_MARKER</td>
<td>0</td>
<td>Change parameter from 0 to 1 to perform three-marker analysis NOTE: It’s not possible to select three-marker and two-marker analysis together</td>
</tr>
<tr>
<td>PRETEST</td>
<td>1</td>
<td>Pre-test is selected: 1=yes, 0=no</td>
</tr>
<tr>
<td>PRETEST_CUTOFF</td>
<td>0.05</td>
<td>Pre-test threshold. If Pre-test yields p-value <= cutoff, TEST is conducted</td>
</tr>
<tr>
<td>TEST</td>
<td></td>
<td>Multi-marker tests: 1=chi-square test on contingency table (8 d.f.), 2=log-linear model (4 d.f., test FOR interaction), 3-12=logistic regression models, 15=case-only allelic interaction, 16=case-only SNP-SNP interaction, M= User-defined logistic regression model (MODELFILE). Detailed description are presented in the model table</td>
</tr>
</tbody>
</table>
NOTE: tests 1-2 are possible for two-marker and three-marker analysis, tests 3-8 are used only for two-marker analysis and tests 9-12 are only for three-marker analysis

<table>
<thead>
<tr>
<th># Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVARIATES</td>
</tr>
<tr>
<td>SEXCOV</td>
</tr>
<tr>
<td>COVARIANCE_MATRIX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Priorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLETOP</td>
</tr>
<tr>
<td>M_WITH_SINGLETOP</td>
</tr>
<tr>
<td>GENETIC_IMPACT</td>
</tr>
<tr>
<td>M_WITH_GENETIC_IMPACT</td>
</tr>
</tbody>
</table>
M_WITH_GENETIC_IMPACT 3

is only possible when
THREE_MARKER 1

<table>
<thead>
<tr>
<th>SNP1</th>
<th>SNP2</th>
<th>SNP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix first SNP for analysis, specify rs number</td>
<td>Fix second SNP for analysis, specify rs number</td>
<td>Fix third SNP for analysis (possible only when THREE_MARKER 1), specify rs number</td>
</tr>
</tbody>
</table>

Pathway Association Analysis

PATHWAY
Pathway information is used as a prior for interaction analysis:
1 = yes, 0 = no

NOTE: To use this option the path to the pathway file (keyword: PATHWAYFILE) has to be declared

PATHWAYANALYSIS
Pathway association analysis with one of the six pathway association tests (chapter chapter6)

NOTE: Choose, for instance, a number of SNP, multiply it by 0.05
(50000 × 0.05 = 25000 → SINGLETOP 25000). Simulations should be put on at least 999

NOTE: To use this option the path to the pathway file (keyword: PATHWAYFILE) has to be declared

PATHWAYTEST

1 = SNP ratio, 2 = Fisher score (all significant SNPs),
3 = gene ratio (ALIGATOR), 4 = Fisher Max (best SNP per gene),
5 = Fisher MaxPlus, 6 = interaction ratio

NOTE: PATHWAYANALYSIS has to be selected.

NOTE: To use this option the path to the pathway file (keyword: PATHWAYFILE) has to be declared

P_INTERRATIO
p-value cutoff for TEST 6

Genome-wide Haplotype Analysis

HAPLO

Genome-wide Haplotype Analysis (GWHA) for all SNPs pairs/triples less than HAPLO_DIST apart

NOTE: To use two-marker select TWO_MARKER 1, for three-marker select THREE_MARKER 1
NOTE: To use this option the following options have to be selected: HAPLO 1 and HAPLO_DIST have to be specified

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAPLO_DIST</td>
<td>50000</td>
<td>To define the haplotype distance. Here all pairs/triples less than 50000 bp apart</td>
</tr>
<tr>
<td>DOHAPFILE</td>
<td>0</td>
<td>Produce proxy-file for YAMAS (section :TP 2.5)</td>
</tr>
</tbody>
</table>

MC-simulation

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMULATION</td>
<td></td>
<td>Number of MC-simulations (0=no simulations will be conducted)</td>
</tr>
<tr>
<td>MC_WITH_SM</td>
<td>0</td>
<td>1=MC-simulations account for multi-marker AND single-marker tests. 0=MC-simulations account only for multi-marker tests</td>
</tr>
<tr>
<td>PRINTTOP</td>
<td>100</td>
<td>Best n multi-marker p-values are printed</td>
</tr>
</tbody>
</table>

Test for supra-multiplicativity of SNP sets

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIABILITY</td>
<td>0</td>
<td>Test for supra-multiplicativity of SNP sets (1=SMT, 2=ESMT)</td>
</tr>
<tr>
<td>SNP_COVARIATES</td>
<td>rs11248850;</td>
<td>reported SNPs</td>
</tr>
<tr>
<td>SNP_RISK</td>
<td>G;T;A;C;R;</td>
<td>risk alleles (R=risk allele shall be derived from the data)</td>
</tr>
</tbody>
</table>

Stratified analysis

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATIFY_STRUCT</td>
<td>PAIR, GROUP or CLUSTER</td>
<td></td>
</tr>
<tr>
<td>STRATIFY_VALID</td>
<td>VICINITY</td>
<td>CLUSTER or VICINITY</td>
</tr>
<tr>
<td>GROUP_TEST</td>
<td>SQUARE or LINEAR</td>
<td></td>
</tr>
<tr>
<td>CLUSTER_COVARS</td>
<td>0</td>
<td>0=off, 1=on</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFILTER</td>
<td></td>
<td>p-value cutoff for multi-marker analysis</td>
</tr>
<tr>
<td>OUTPUTNAME</td>
<td>./myproject/test</td>
<td>Specify the output name</td>
</tr>
<tr>
<td>ANNOTATE</td>
<td></td>
<td>Add annotation information in the output files</td>
</tr>
<tr>
<td>GENECOL</td>
<td>5</td>
<td>Specify column number of gene in the annotation information</td>
</tr>
</tbody>
</table>
2.4 Output files

The following output files are created by the program:

- `singlemarker.txt`: results of single-marker-analysis
- `singelemarkerTop.txt`: top results of single-marker-analysis
- `bestMarkerCombi2.txt`: results of two-marker-analysis
- `bestMarkerCombi2Details.txt`: contingency tables of two-marker-analysis and logistic/linear regression parameters
- `bestMarkerCombi3.txt`: results of three-marker-analysis
- `bestMarkerCombi3Details.txt`: contingency tables of three-marker-analysis and logistic/linear regression parameters
- `toplistMC.txt`: p-values from MC-Simulation
- `mibs.txt`: IBS-matrix
- `ibsRelatives.txt`: persons who are defined as relatives
- `ibsOutlier.txt`: persons who are defined as outliers
- `deletedSnps.txt`: SNPs deleted after QC
- `deletedPerson.txt`: persons deleted after QC
- `errorMessage.txt`: errors that occurred during the program flow/execution
- `logfile.txt`

2.4.1 Output single marker

The parameters in the output file depend on the used single-marker-test (Armitage’s trend test, genotype test with 2 d.f., logistic regression with 1 d.f., logistic regression with 2 d.f.). The following list shows all possible parameters.

- **No** Line number in the input file
- **Chr** Chromosome
- **rs_No** rs number
- **Position** Position
- **Gene** Gene
- **minor** A-allele = allele listed first = minor allele
- **major** B-allele = allele listed second = major allele
- **MAF(All/Co/Ca)** Minor allele frequency
- **SNP_MR** Missing rate
- **HWE_Ca** Hardy-Weinberg Equilibrium cases
- **HWE_Co** Hardy-Weinberg Equilibrium controls
2.4 Output files

- **P_Single-marker** single-marker p-value
- **P_Corr** corrected single-marker p-value (Sidak-Correction)
- **A_Ca_N** Number of A-alleles in cases (minor allele)
- **B_Ca_N** Number of B-alleles in cases (major allele)
- **A_Co_N** Number of A-alleles in controls (minor allele)
- **B_Co_N** Number of B-alleles in controls (major allele)
- **A_Ca** Allele frequency of allele A in cases (minor allele)
- **B_Ca** Allele frequency of allele B in cases (major allele)
- **A_Co** Allele frequency of allele A in controls (minor allele)
- **B_Co** Allele frequency of allele B in controls (major allele)
- **OR_A** Odds ratio of allele A (minor allele)
- **LCL_A** lower limit of confidence interval of allele A (minor allele)
- **RCL_A** upper limit of confidence interval of allele A (minor allele)
- **OR_B** Odds ratio of allele B (major allele)
- **LCL_B** lower limit of confidence interval of allele B (major allele)
- **RCL_B** upper limit of confidence interval of allele B (major allele)
- **beta1** Beta of linear/logistic regression (allelic effect)
- **se1** Standard error of linear/logistic regression (allelic effect)
- **OR1** Odds ratio of linear/logistic regression (allelic effect)
- **LCL1** lower limit of confidence interval of linear/logistic regression (allelic effect)
- **RLC1** upper limit of confidence interval of linear/logistic regression (allelic effect)
- **beta1D** Beta of linear/logistic regression (dominance effect)
- **se1D** Standard error of linear/logistic regression (dominance effect)
- **OR1D** Odds ratio of linear/logistic regression (dominance effect)
- **LCL1D** lower limit of confidence interval of linear/logistic regression (dominance effect)
- **RLC1D** upper limit of confidence interval of linear/logistic regression (dominance effect)
- **sigma1** upper triangle elements of the covariance matrix of model parameters
2.5 Produce SNP-Proxy-Files for Meta-Analysis with YAMAS

With INTERSNP it is possible to produce a file with r^2-values for all SNPs that lie within a pre-specified distance, for instance from HAPMAP and/or 1000 Genomes data (.tped/.tfam files). In addition to the basic keywords (TPED/TFAM, QC options,...), the following keywords have to be specified in the selection file:

\begin{verbatim}
TWO_MARKER 1
TEST 13
QT 1
HAPLO 1
HAPLO_DIST 10000
DOHAPFILE 1
\end{verbatim}

In the above example, r^2 will be computed for all SNPs with a distance smaller than 10000 bp. The output file (*.hapfile.txt) will contain all SNP pairs for which $r^2 \geq 0.20$.

Example:

\begin{verbatim}
16 rs1211375 A C rs3918352 A G 0.338 1000 0
16 rs3918352 A G rs11642609 C T 0.659 2000 1
16 rs8051485 T C rs11248914 C T 0.212 15722 1
...
\end{verbatim}

Column 1) chromosome

Column 2) marker id of the first marker, e.g. rs-id of the first SNP

Column 3) minor allele of the first marker or SNP

Column 4) major allele of the first marker or SNP

Column 5) marker id of the second marker, e.g. rs-id of the second SNP

Column 6) minor allele of the second marker or SNP

Column 7) major allele of the second marker or SNP

Column 8) the difference of the markers base pair positions

Column 9) r^2

Column 10) identifies proxy alleles. In line 1, 0 indicates that the haplotype A-A (composed of columns 3 and 6, for each SNP the first listed allele) is more frequent than expected under linkage disequilibrium. It immediately follows that also the C-G haplotype is more frequent than expected under linkage disequilibrium. Therefore, allele A from SNP 1 and allele A from SNP 2 are mutual proxy alleles, and likewise allele C from SNP 1 and allele G from SNP 2. In line 2, the situation is reverse, as indicated by a 1 in the last column. Here, allele A (column 3) from SNP1 and allele T (second(!) allele of SNP 2, column 7) are the mutual proxy alleles.

A more detailed output is obtained with the choice DOHAPFILE 2.

\begin{verbatim}
16 rs1211375 A C rs3918352 A G 0.378 0.622 0.425 0.575 0.300 0.078 0
16 rs1203957 T G rs3918352 A G 0.110 0.890 0.425 0.575 0.110 0.000 0.315 0.575 1.000 0.167 0
16 rs3918352 A G rs11642609 C T 0.412 0.588 0.485 0.516 0.000 0.412 0.485 0.103 1.000 0.659 1
\end{verbatim}
The first seven columns are the same as before. Columns 8-9 are allele frequencies for SNP 1, columns 10-11 are allele frequencies for SNP 2. Columns 12-15 are the four haplotype frequencies, here in lexicographic order, i.e. ignoring the proxy definition. Column 16 is D', column 17 is r^2, and column 18 is the proxy indicator. The computation of the indicator is based on the allele and haplotype frequencies listed.

For more details visit the YAMAS web-page http://yamas.meb.uni/bonn.de/
Chapter 3

Examples

Here we present how to conduct a full Genome-wide Interaction Analysis with a pre-test, six GWIA strategies to demonstrate the usage of the software and how to do a Genome-wide Haplotype Analysis. Notice that only the relevant options are presented in the selection file.

3.1 Genome-wide Interaction Analysis with Pre-test

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T PED ./test.tped</td>
<td>path to the .tped file</td>
</tr>
<tr>
<td>TFAM ./test.tfam</td>
<td>path to the .tfam file</td>
</tr>
<tr>
<td>SINGLE_MARKER 1</td>
<td>Armitage’s trend test</td>
</tr>
<tr>
<td>PRETEST 1</td>
<td>pre-test: 1=yes</td>
</tr>
<tr>
<td>PRETEST_CUTOFF 0.01</td>
<td>pre-test threshold. Here, threshold for pre-test is 0.01</td>
</tr>
<tr>
<td>TWO_MARKER 1</td>
<td>two-marker analysis: 1=yes</td>
</tr>
<tr>
<td>TEST 2</td>
<td>log-linear model, test for genotypic interaction</td>
</tr>
<tr>
<td>OUTPUTNAME ./myproject/test</td>
<td>specify the output name</td>
</tr>
</tbody>
</table>

3.2 Strategy I

All pairs of SNPs with at least one SNP among the top 10 single-marker results

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T PED ./test.tped</td>
<td>path to the .tped file</td>
</tr>
<tr>
<td>TFAM ./test.tfam</td>
<td>path to the .tfam file</td>
</tr>
<tr>
<td>SINGLE_MARKER 1</td>
<td>Armitage’s trend test</td>
</tr>
<tr>
<td>TWO_MARKER 1</td>
<td>two-marker analysis: 1=yes</td>
</tr>
<tr>
<td>TEST 2</td>
<td>log-linear model, test for genotypic interaction</td>
</tr>
<tr>
<td>SINGLETOP 10</td>
<td>top 10 single-marker results</td>
</tr>
<tr>
<td>M_WITH_SINGLETOP 1</td>
<td>at least one SNP among the top 10 single-marker results</td>
</tr>
<tr>
<td>OUTPUTNAME ./myproject/test</td>
<td>specify the output name</td>
</tr>
</tbody>
</table>

3.3 Strategy II

All pairs of SNPs which are among the top 1000 single-marker results

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T PED ./test.tped</td>
<td>path to the .tped file</td>
</tr>
<tr>
<td>TFAM ./test.tfam</td>
<td>path to the .tfam file</td>
</tr>
<tr>
<td>SINGLE_MARKER 1</td>
<td>Armitage’s trend test</td>
</tr>
</tbody>
</table>
3.4 Strategy III

All pairs of SNPs which are among the top 50000 single-marker results and also lie in a coding region of a gene

```
TWO_MARKER 1 // two-marker analysis: 1=yes
TEST 5 // logistic regression model:
    test for additive interaction
SINGLETOP 50000 // top 50000 single-marker results
M_WITH_SINGLETOP 2 // all pairs of SNPs which are among the top 50000 single-marker results
GENETIC_IMPACT 4 // genetic impact: non-synonymous SNPs
M_WITH_GENETIC_IMPACT 2 // all pairs of non-synonymous SNPs
OUTPUTNAME ./myproject/test // specify the output name
END
```

3.5 Strategy IV

All pairs of non-synonymous SNPs

```
TPED ./test.tped // path to the .tped file
tfam ./test.tfam // path to the .tfam file
ANNOTATIONFILE ./annotationfile.txt // path to the annotation file
SINGLE_MARKER 1 // Armitage’s trend test
TWO_MARKER 1 // two-marker analysis: 1=yes
TEST 5 // logistic regression model:
    test for additive interaction
GENETIC_IMPACT 4 // genetic impact: within coding region
M_WITH_GENETIC_IMPACT 2 // all pairs of SNPs which lie in a coding region of a gene
OUTPUTNAME ./myproject/test // specify the output name
END
```

3.6 Strategy V

All pairs of SNPs which are among the top 50000 single-marker results and also lie in the same pathway

```
TPED ./test.tped // path to the .tped file
tfam ./test.tfam // path to the .tfam file
PATHWAYFILE ./KEGG_2_SNP_229.txt // path to the pathway file
```
20 Examples

SINGLE_MARKER 1 // Armitage’s trend test
TWO_MARKER 1 // two-marker analysis: 1=yes
TEST 2 // log-linear model: test for genotypic interaction
SINGLETOP 50000 // top 50000 single-marker results
M_WITH_SINGLETOP 2 // all pairs of SNPs which are among the
top 50000 single-marker results
PATHWAY 1 // all pairs of SNPs which lie in the same pathway
OUTPUTNAME ./myproject/test // specify the output name
END

3.7 Genome-wide Haplotype Analysis

TPED ./test.tped // path to the .tped file
TFAM ./test.tfam // path to the .tfam file
SINGLE_MARKER 1 // Armitage’s trend test
TWO_MARKER 1 // two-marker analysis: 1=yes
HAPLO 1 // haplotype analysis
HAPLO_DIST 50000 // pathway analysis with Fisher score
OUTPUTNAME ./myproject/test // specify the output name
END
Chapter 4

Tests in INTERSNP

4.1 Single-marker tests

By default, a single-marker p-value is computed for all QC-SNPs. For the autosomes and the pseudoautosomal region of the Y chromosome the user can either choose Armitage’s trend test (Armitage, 1955) or the genotype test with 2 degrees of freedom (d.f.). It is also possible to include covariates in the logistic/linear regression, the allelic test with 1 d.f. and the genotypic test with 2 d.f. Another advantage of the logistic/linear regression is that all chromosomes, including X and Y, can be analyzed. Without logistic/linear regression Y-chromosomal markers are evaluated with the \(\chi^2 \) -test for the \(2 \times 2 \) table of allele counts in male individuals. For X-chromosomal SNPs, we use the allele-based test with 1 d.f. suggested by D. Clayton (Clayton, 2008). Clayton’s approach guarantees that hemizygote males and homozygote females contribute equally to the test statistic, reflecting the fact that only one of the X-chromosomes is active in females.

4.2 Two- and three-marker analysis

4.2.1 \(\chi^2 \) -test for full genotype contingency table (TEST 1)

For two SNPs, there are \(3 \times 3 = 9 \) two-marker genotypes. We consider the respective \(3 \times 3 \times 2 \) contingency table of counts in cases and controls. Let \(T \) be the standard test statistic for contingency tables, i.e., \(T = \sum_{i,j,k} \frac{(O_{i,j,k} - E_{i,j,k})^2}{E_{i,j,k}} \), where \(i, j \in \{1, 2, 3\} \), \(k \in \{1, 2\} \), \(O_{i,j,k} \) is the observed number of counts in cell \((i, j, k) \) and \(E_{i,j,k} \) is the number of counts in cell \((i, j, k) \) expected under the null hypothesis. \(T \) is \(\chi^2 \)-distributed with 8 d.f. By construction, TEST 1 does not yield a test for interaction, but a test that has power if both SNPs interact. The test can become significant through marginal SNP effects alone.

4.2.2 Test for interaction using a log-linear model (TEST 2)

Following (Bishop et al., 2007) the observations \(x_{ijk} \) of the \(3 \times 3 \times 2 \) contingency table are modeled by fitting a log-linear model with expected cell counts \(m_{ijk} \) to the cell entries \(\log m_{ijk} = u + u_{1(i)} + u_{2(j)} + u_{3(k)} + u_{12(ij)} + u_{13(ik)} + u_{23(jk)} \) without the term \(u_{123(ijk)} \). Testing the null hypothesis \(H_0 : u_{123(ijk)} = 0 \) yields an explicit test for genotypic interaction. With maximum likelihood estimates \(m_{ijk} \) for the cell counts we obtain the test statistic \(T = 2 \sum_{i,j,k} x_{ijk} \log \frac{x_{ijk}}{m_{ijk}} \) that is \(\chi^2 \)-distributed with 4 d.f. The test is equivalent to the respective 4 d.f. genotypic test in the logistic regression framework, but is much faster to compute.
4.2.3 Logistic regression (TESTS 3–12)

TEST 1 and TEST 2 are quick screening tests.

With logistic regression (Cordell and Clayton, 2002) a more flexible modeling is possible: Test for and under interaction, allelic and genotypic tests and the use of covariates.

We define \(\logit(p) := \log\left(\frac{p}{1-p}\right) = \beta^T x \), where \(\beta \) is the vector of coefficients to be estimated and \(x \) is a vector representing genotype information.

4.2.3.1 Parameter coding

We follow the coding suggested by (Cordell and Clayton, 2002). For each SNP \(i, i \in \{1, 2, 3\} \), we model its allelic effect \(x_i \), by coding the genotypes \((1, 1), (1, 2), \) and \((2, 2)\) as \(x_1 = -1, x_2 = 0, x_3 = 1 \). Next, we model dominance effects \(x_{i,D}, i \in \{1, 2, 3\} \), as \(x_{1,D} = -0.5, x_{2,D} = 0.5, x_{3,D} = -0.5 \) for the genotypes \((1, 1), (1, 2), \) and \((2, 2)\), respectively. By multiplication, we obtain interaction terms, for instance, \(x_1 x_2 \) represents allelic interaction between SNPs 1 and 2, while \(x_{1,D} x_{2,D} \) represents interaction between the dominance terms of SNPs 1 and 2. Note that these interaction terms code interaction on an additive logit scale and, hence, on a multiplicative odds ratio scale.

4.2.3.2 Likelihoods

Let \(\beta_0 \) be the intercept parameter that defines the baseline likelihood \(L_0 := \logit(p) = \beta_0 \). Next, the likelihood \(L_i^A := \beta_0 + \beta_1 x_1 \) models the allelic effect of SNP 1 and comparison to \(L_0 \) yields a likelihood-ratio test with 1 degree of freedom. Analogously, comparison of \(L_i^G := \beta_0 + \beta_1 x_1 + \beta_{1,D} x_{1,D} \) to \(L_0 \) yields a genotypic test for SNP 1 with 2 d.f. In general, we let \(L_{1,2}^A \) and \(L_{1,2}^G \) denote likelihoods containing allelic terms, or, respectively, allelic and genotypic terms, for SNPs 1 and 2. In addition let, \(L_{1,2}^{AI} \) and \(L_{1,2}^{GI} \) be likelihoods that also contain interaction terms, for instance, \(L_{1,2}^{AI} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{1,2} x_{1} x_{2} \) and \(L_{1,2}^{GI} = \beta_0 + \beta_1 x_1 + \beta_{1,D} x_{1,D} + \beta_2 x_2 + \beta_{2,D} x_{2,D} + \beta_{1,2,D} x_{1,D} x_{2,D} + \beta_{1,D,2} x_{1} x_{2,D} + \beta_{1,D,2} x_{1,D} x_{2} + \beta_{1,D,2} x_{1,D} x_{2,D} \).

<table>
<thead>
<tr>
<th>Test No</th>
<th>Test</th>
<th>Formula</th>
<th>d.f.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>chi-square-test</td>
<td></td>
<td>8</td>
<td>Full genotype test (contingency table)</td>
</tr>
<tr>
<td>2</td>
<td>log-linear model</td>
<td>(L_{1,2}^{G,I}) vs (L_{1,2}^{G,I})</td>
<td>4</td>
<td>Test for genotypic interaction</td>
</tr>
<tr>
<td>3</td>
<td>logistic regression</td>
<td>(L_{1,2}^{A,I}) vs (L_{1,2}^{G,I})</td>
<td>3</td>
<td>Full additive test</td>
</tr>
<tr>
<td>4</td>
<td>logistic regression</td>
<td>(L_{1,2}^{G,I}) vs (L_0)</td>
<td>8</td>
<td>Full genotype test</td>
</tr>
<tr>
<td>5</td>
<td>logistic regression</td>
<td>(L_{1,2}^{A,I}) vs (L_{1,2}^{A,I})</td>
<td>1</td>
<td>Test for additive interaction</td>
</tr>
<tr>
<td>6</td>
<td>logistic regression</td>
<td>(L_{1,2}^{G,I}) vs (L_{1,2}^{G,I})</td>
<td>4</td>
<td>Test for genotypic interaction</td>
</tr>
<tr>
<td>7</td>
<td>logistic regression</td>
<td>(L_{1,2}^{A,I}) vs (L_{1,2}^{A,I})</td>
<td>2</td>
<td>Additional allelic effect of SNP2</td>
</tr>
<tr>
<td>8</td>
<td>logistic regression</td>
<td>(L_{1,2}^{G,I}) vs (L_{1,2}^{G,I})</td>
<td>6</td>
<td>Additional genotypic effect of SNP2</td>
</tr>
<tr>
<td>9</td>
<td>logistic regression</td>
<td>(L_{1,2,3}^{G,I}) vs (L_0)</td>
<td>7</td>
<td>Full additive test</td>
</tr>
<tr>
<td>10</td>
<td>logistic regression</td>
<td>(L_{1,2,3}^{A,I}) vs (L_{1,2,3}^{A,I})</td>
<td>4</td>
<td>Test for allelic interaction</td>
</tr>
<tr>
<td>11</td>
<td>logistic regression</td>
<td>(L_{1,2,3}^{A,I}) vs (L_{1,2,3}^{A,I})</td>
<td>1</td>
<td>Test for 3-fold allelic interaction</td>
</tr>
<tr>
<td>12</td>
<td>logistic regression</td>
<td>(L_{1,2,3}^{A,I}) vs (L_{1,2,3}^{A,I})</td>
<td>4</td>
<td>Additional allelic effect of third locus</td>
</tr>
<tr>
<td>13</td>
<td>chi-square-test</td>
<td></td>
<td>4</td>
<td>Case-only allele interaction test</td>
</tr>
<tr>
<td>14</td>
<td>chi-square-test</td>
<td></td>
<td>4</td>
<td>Case-only SNP-SNP interaction test</td>
</tr>
<tr>
<td>M</td>
<td>logistic regression</td>
<td></td>
<td>-</td>
<td>User defined logistic regression (modelfile)</td>
</tr>
</tbody>
</table>

Table 4.1: Model table for case-control data
4.2.4 Linear regression

To analyze quantitative traits we use linear regression. The parameter coding is equal to logistic regression. For linear regression, we define \(y = \beta^T x \), where \(y \) is a quantitative trait variable, and the sum of squared errors (SSE) is computed. The errors measure, per person \(i \), the deviation between the observed value \(y_i \) and its estimate \(\hat{y}_i \) predicted by the model.

<table>
<thead>
<tr>
<th>Test No</th>
<th>Test</th>
<th>Formula</th>
<th>d.f.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>linear regression</td>
<td>(SSE_{12}^{A_I}) vs (SSE_0)</td>
<td>3</td>
<td>Full additive test</td>
</tr>
<tr>
<td>4</td>
<td>linear regression</td>
<td>(SSE_{12}^{A_I}) vs (SSE_0)</td>
<td>8</td>
<td>Full genotype test</td>
</tr>
<tr>
<td>5</td>
<td>linear regression</td>
<td>(SSE_{12}^{G_I}) vs (SSE_{12}^{A})</td>
<td>1</td>
<td>Test for additive interaction</td>
</tr>
<tr>
<td>6</td>
<td>linear regression</td>
<td>(SSE_{12}^{G_I}) vs (SSE_{12}^{G})</td>
<td>4</td>
<td>Test for genotypic interaction</td>
</tr>
<tr>
<td>7</td>
<td>linear regression</td>
<td>(SSE_{12}^{G_I}) vs (SSE_{12}^{G})</td>
<td>2</td>
<td>Additional allelic effect of SNP2</td>
</tr>
<tr>
<td>8</td>
<td>linear regression</td>
<td>(SSE_{12}^{G_I}) vs (SSE_{12}^{G})</td>
<td>6</td>
<td>Additional genotypic effect of SNP2</td>
</tr>
<tr>
<td>9</td>
<td>linear regression</td>
<td>(SSE_{12}^{G_I}) vs (SSE_0)</td>
<td>7</td>
<td>Full additive test</td>
</tr>
<tr>
<td>10</td>
<td>linear regression</td>
<td>(SSE_{12}^{G_I}) vs (SSE_{12}^{A})</td>
<td>4</td>
<td>Test for allelic interaction</td>
</tr>
<tr>
<td>11</td>
<td>linear regression</td>
<td>(SSE_{12}^{G_I}) vs (SSE_{12}^{A})</td>
<td>1</td>
<td>Test for 3-fold allelic interaction</td>
</tr>
<tr>
<td>12</td>
<td>linear regression</td>
<td>(SSE_{12}^{G_I}) vs (SSE_{12}^{A})</td>
<td>4</td>
<td>Additional allelic effect of third locus</td>
</tr>
<tr>
<td>M</td>
<td>linear regression</td>
<td>-</td>
<td>-</td>
<td>User defined linear regression (modelfile)</td>
</tr>
</tbody>
</table>

Table 4.2: Model table for quantitative traits

4.2.4.1 Tests (2 SNPs)

For two SNPs, comparison of \(L_{12}^A \) against \(L_0 \) yields a full allelic test with 3 d.f. (TEST 3), while comparison of \(L_{12}^G \) against \(L_0 \) yields a full genotypic test with 8 d.f. (TEST 4). In order to test for allelic interaction, one compares \(L_{12}^{A_I} \) against \(L_{12}^A \) (1 d.f., TEST 5) and in order to test for genotypic interaction one compares \(L_{12}^{G_I} \) against \(L_{12}^G \) (4 d.f., TEST 6). Furthermore, it is possible to test for the additional effect of SNP 2 while controlling for the effect of SNP 1 by comparing \(L_{12}^{A_I} \) against \(L_{12}^A \) (2 d.f., TEST 7), or, by comparing \(L_{12}^{G_I} \) against \(L_{12}^G \) (6 d.f., TEST 8). These tests are summarized in the model Table Model table for case-control data4.1 and serve as INTERSNP standard tests that can called via their test number.

4.2.4.2 Tests (3 SNPs)

For three SNPs, likelihoods and tests can be formalized analogously. Here, we describe only allelic tests, but note that INTERSNP allows also explicit model specification, in particular genotypic 3-SNP tests. Let \(L_{1,2,3}^A = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \) be the 3-SNP allelic likelihood, let \(L_{1,2,3}^{A_I} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_1,2 x_1 x_2 + \beta_3 x_3 \) be the 3-SNP allelic likelihood including the interaction term for SNPs 1 and 2 and let \(L_{1,2,3}^{A_I} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_1,2 x_1 x_2 + \beta_3 x_3 + \beta_1,3 x_1 x_3 + \beta_2,3 x_2 x_3 + \beta_1,2,3 x_1 x_2 x_3 \) be the allelic likelihood including all pairwise and the three-fold interaction term. Then, testing \(L_{1,2,3}^{A_I} \) against \(L_0 \) yields a full 3-SNP allelic test with 7 d.f. (TEST 9), while testing \(L_{1,2,3}^{A_I} \) against \(L_{1,2,3}^A \) yields a test for two- and three-fold allelic interaction (4 d.f., TEST 10). Testing \(L_{1,2,3}^{A_I} \) against \(L_{1,2,3}^{A_I} \) yields a test for three-fold allelic interaction (1 d.f., TEST 11). Finally, testing \(L_{1,2,3}^{A_I} \) against \(L_{1,2,3}^A \) yields a test for the additional allelic effect of SNP 3 while controlling for SNPs 1 and 2 (4 d.f., TEST 12).
4.2.4.3 X-chromosome

For X-chromosomal markers, all dominance and dominance interaction terms are ignored.

4.2.4.4 Covariates

All regression tests can be combined with up to 10 covariates (Options: COVARIATES, COVARIATEFILE). In particular, adjustment for population strata is possible.

4.2.4.5 User-defined regression models

Further tests using logistic regression can be specified via a modelfile. Choose M for the option TEST and specify the path to the modelfile (MODELFILE option). Include/exclude likelihood parameters with 1/0, respectively, as shown in the modelfile (see :TP 2.2.5) provided in the download area. Likelihood L_1 is tested against likelihood L_2.

4.2.5 Pre-tests

Linear and logistic regression allow flexible modeling and inclusion of covariates, but their computation can be time-consuming, mostly because of the operations on the relatively large design matrices involved. Hence, when a Genome-wide Interaction Analysis shall be conducted, it makes sense to, first, apply a simple, easy-to-compute, pre-test to all SNP pairs and, second, to apply the more sophisticated test only to those pairs for which the pre-test yields a p-value smaller than PRETEST_CUTOFF. A cutoff of 0.01 is a reasonable choice, since it will reduce the number of computations of the "proper" test by a factor of at least 100 on average, but guarantees that no "real" p-values smaller than 10^{-5} are missed. Since p-values in the range of 10^{-12} are required for a complete GWIA (Becker, 2011), the loss of pairs with p-values less significant than 10^{-5} will in most cases be irrelevant. Even a cutoff of 0.001 or 0.0001 for the pre-test would be acceptable. The only situation in which relevant SNP pairs may be missed occurs when there are covariates with an extreme impact on the p-value, simply because the pre-tests ignore covariates.

4.2.5.1 Pre-test allelic interaction (logistic regression)

When PRETEST 1 is selected in combination with TEST 3 (full allelic test, 3 d.f.) or TEST 5 (test for allelic interaction, 1 d.f.), a log-linear model with 1 d.f. (test for allelic interaction) is applied as a pre-test. We define the log-linear model in analogy to the log-linear model in the genotypic case (our TEST 2, section :TP 4.2.2). There, the $3 \times 3 \times 2$ genotype contingency table is considered. In the allelic case, we consider the $2 \times 2 \times 2$ two-SNP-allele table, where the first dimension reflects the two alleles of SNP 1, the second dimension reflects the two alleles of SNP 2, and the last dimension reflects cases/control-status. Double heterozygote cases (controls) contribute 0.5 units to each cell of the 2×2 table of cases (controls). This practice is a simple work-around to treat double heterozygotes but renders the accompanying log-linear test conservative when its test statistic is evaluated with the χ^2-distribution with 1 d.f. In this sense, the 1 d.f. log-linear test is not a proper test. However, its p-values are strongly correlated with the p-values of the test for allelic interaction in the logistic model, and, therefore, are well suited to serve as a pre-test, when the cutoff is chosen as suggested above.

4.2.5.2 Pre-test genotypic interaction (logistic regression)

In the genotypic case, the log-linear test (TEST 2, section :TP 4.2.2) would be the obvious pre-test. Since this is a proper test in its own right, a useful strategy is to conduct a complete GWIA with TEST 2, produce a COMBILIST (section :TP 2.2.6) with the best results, and run another test on the COMBILIST.
4.2.5.3 Pre-test genotypic interaction (linear regression)

When PRETEST 1 is selected in combination with TEST 4 (full genotype test, 8 d.f.) or TEST 6 (test for genotypic interaction, 4 d.f.), an ANOVA with 4 d.f. (test for genotypic interaction) is applied as a pre-test. Note that when the pre-test is combined with TEST 4, pairs with marginal effects in both SNPs but with just modest interaction may be missed.

4.2.5.4 Pre-test allelic interaction (linear regression)

When PRETEST 1 is selected in combination with TEST 3 (full allelic test, 3 d.f.) or TEST 5 (test for allelic interaction, 1 d.f.), an ANOVA with 1 d.f. (test for allelic interaction) is applied as a pre-test. Double heterozygotes are treated as described for the logistic regression, with the same consequences. Note that when the pre-test is combined with TEST 3, pairs with marginal effects in both SNPs but with just modest interaction may be missed.
Chapter 5

Case-only analysis

Case-only (or case-series, case-control without controls) design is based on a sample consisting of cases only. It is an efficient approach to test for gene-environment or gene-gene interaction in disease etiology, when there is a strong reason to believe that particular assumptions are fulfilled. Concerning a test for gene-environment interaction it is necessary to assume that the genetic type and the exposure occur independently in the population. A test for gene-gene interaction is reasonable to perform assuming that the frequencies of genetic variants are independent in the population or, equivalently, that the genes/SNPs under study are in linkage equilibrium.

Here, we accept that the genetic interaction between two genetic factors (e.g. genes, SNPs, alleles) is present if the joint effect of two factors on a disease differs from the additive combination of independent effects from both of them. The joint effect of two genetic factors is the effect due to the presence of both of them. The independent effect of one of the factors is its effect on a disease in the absence of the other factor. Sometimes the term “epistasis” is used instead of genetic interaction in the literature. The same definition is valid for the gene-environment interaction, where one of the genetic factors is replaced by the exposure.

From now on only the gene-gene interaction is addressed.

If the data satisfy the assumptions discussed above, then the so called case-only test for genetic interaction can be performed by using a χ^2—test of independence between genotypes (with four degrees of freedom) or between alleles (with one degree of freedom) as well as logistic regression models. Notably, the case-only analysis leads sometimes to a more valid estimation of interaction than the corresponding case-control analysis, i.e. case-only based tests possess a higher power, see e.g. (Cordell, 2009), (Gatto et al., 2004), (Piegorsch et al., 1994), (Yang et al., 1999).

INTERSNP suggests several tests to check for the gene-gene interaction, where the genetic factors are chosen to be a pair of SNPs (SNP-SNP interaction). Starting from a pair of SNPs, the allelic interaction test can be performed as well.

IMPORTANT: In our study it was observed that the LD distance between two SNPs has to be at least 20 Mb (20000000 bp) in order to satisfy the assumption of linkage equilibrium. The recommended LD distance is even bigger and equals 50 Mb.

5.1 Case-only allelic interaction test (TEST 15)

TEST 15 in INTERSNP is asymptotically equivalent to the case-only allelic interaction test in whole-genome analysis package PLINK and based on a χ^2—test of independence between two alleles with one degree of freedom, see e.g. (Cordell, 2009), (Purcell et al., 2007). For this test the given SNPs data are organized in a 3×3 table of genotypic counts, which is in turn reduced to the 2×2 table of allelic counts.
5.2 Case-only SNP-SNP interaction test (TEST 16)

TEST 16 in INTERSNP suggests to check for SNP-SNP interaction in the case-only mode. TEST 16 is based on a \(\chi^2 \)-test of independence between two SNPs with four degrees of freedom, where the \(3 \times 3 \) table of genotypic counts is used. Let \(x_{ij}, i, j \in \{1, 2, 3\} \) be the observed counts. Denote \(x_{+j} = \sum_{i=1}^{3} x_{ij}, j \in \{1, 2, 3\} \), \(x_{i+} = \sum_{j=1}^{3} x_{ij}, i \in \{1, 2, 3\} \), and \(x_{++} = \sum_{i,j=1}^{3} x_{ij} \). Expected counts are determined by

\[
m_{ij} = \begin{cases}
 \frac{x_{i+}x_{+j}}{x_{++}}, & \text{if } x_{++} \neq 0, \\
 0, & \text{if } x_{++} = 0,
\end{cases}
\]

for all \(i, j \in \{1, 2, 3\} \). The test statistic \(T \) is defined by

\[
T = 2 \sum_{i,j=1}^{3} x_{ij} \log \frac{x_{ij}}{m_{ij}},
\]

where only positive counts \(x_{ij}, m_{ij} \) are included. The situation, when some of the observed counts are zero, may cause a decrease of the degrees of freedom in the corresponding \(\chi^2 \)-test. The same is true for \(X \)-chromosomal SNPs in males. TEST 16 uses all cases for analysis.

5.3 Selection file for case-only analysis

An example of a selection file to perform the case-only TEST 15 with INTERSNP is given below. Analogously, a selection file for the TEST 16 can be composed.

```
TPED ./test.tped // path to the tped-File
TFAM ./test.tfam // path to the tfam-File
LD_DISTANCE 50000000 // distance between two SNPs, in base pairs (bp)
SINGLE_MARKER 1 // Armitage’s trend test
TWO_MARKER 1 // two-marker analysis: 1=yes
TEST 15 // case-only allelic interaction test
SINGLETOP 1000 // top 1000 single-marker results
PRINTTOP 100 // best 100 multimarker p-values are printed
OUTPUTNAME ./myproject/test // specify the output name
END
```
Chapter 6
Pathway association analysis

Pathway association analysis (PAA) tests for an excess of moderately significant SNPs in genes from a common pathway. Here, we present a Monte-Carlo simulation framework that allows to formulate the main ideas of existing PAA approaches:

- SNP ratio (SNP ratio test (O’Dushlaine et al., 2009)) (PATHWAYTEST 1)
- Fisher score (all significant SNPs) (PATHWAYTEST 2)
- Gene ratio (motivated by ALIGATOR (Holmans et al., 2009)) (PATHWAYTEST 3)
- Fisher Max (motivated by GenGen (Wang et al., 2007)) (PATHWAYTEST 4)
- Fisher MaxPlus (PATHWAYTEST 5)

Our paper "Integrated Genome-Wide Pathway Association Analysis with INTERSNP" (Herold et al., 2012) describing the test in more details.

In order to test for association of a pathway with a phenotype the following parameters have to be specified. See also the example selectionfile "selectionfile_S6.txt".

- PATHWAYANALYSIS 1
- PATHWAYFILE <filename>
- SINGLETOP <singleton>
- PATHWAYTEST <testnumber>
- SIMULATION <n>

PATHWAYANALYSIS 1 indicates that pathway association analysis shall be carried out. The keyword PATHWAYFILE has to be followed by the path to the pathwayfile that shall be analyzed, for instance the KEGG pathwayfile "KEGG_2.snp.b129.txt.ann" that can be found in the download section of the homepage.

The various pathway scores are constructed from all SNP with a p-value smaller than a pre-specified p-value \(p^* \). <singleton> has to be chosen accordingly. For instance, if \(p^* = 0.05 \) is the desired threshold for SNPs to be included into the pathway score and if 500000 QC-SNPs are in the .tped file, then \(500000 \times 0.05 = 25000 \) is the appropriate value for <singleton> (SINGLETOP 25000). Of course, the data set may contain more SNPs with a p-value smaller then 0.05, but fixing the number 25000 instead protects against inflation of type I error due to residual inflation of the single-marker test statistics. Note that all single-marker tests can be combined with the pathway analysis. In particular, quantitative traits and covariates can be handled.
6.1 Pathway scores

Currently 5 different pathway scores are available, identified by the numbers 1 to 5.

- **PATHWAYTEST 1**
 This is the "SNP Ratio" (O’Dushlaine et al., 2009), i.e. the ratio s/t, where s is a number of SNPs per pathway with a p-value among the top <singletop> p-values and t the number of SNPs in a pathway.

- **PATHWAYTEST 2**
 This is the Fisher-Score $-2 \sum \log p$ that runs over all p-values that are among the <singletop> p-values. In contrast to PATHWAYTEST 1, the strength of association is used. An additional adjustment for residual inflation is performed and is described in (Herold et al., 2012).

- **PATHWAYTEST 3**
 This is the "Gene Ratio", i.e. s/t, where s is the number of genes with at least one p-value from <singletop> and where t is the total number of genes of the pathway. This score is motivated by the ALIGATOR software (Holmans et al., 2009).

- **PATHWAYTEST 4**
 This "Fisher-Max-Score" $-2 \sum \log p$ runs over the most significant SNP from each gene. The top-SNP from a gene is only included if it is among the <singletop> p-values. This score is motivated by that of the GenGen software (Wang et al., 2007).

- **PATHWAYTEST 5**
 This score extends the score from TEST 4 with SNPs from a gene that show independent association after conditioning on the top SNP of that gene.

- **PATHWAYTEST 6**
 This pathway score is similar to the "SNP ratio" but instead of using the results of the single-marker analysis the results of the interaction analysis are used to calculate the ratio. So the "interaction ratio" is defined as the number of significant SNP pairs per pathway divided by the number of SNP pairs per pathway. The p-value threshold for the interaction pairs can be defined with the keyword P_INTERRATIO. To use this test the following parameter are needed:

 - TWO_MARKER 1
 - TEST 2 or another interaction test
 - PATHWAYANALYSIS 1
 - PATHWAYTEST 6
 - SIMULATION 999
 - P_INTERRATIO 0.05

6.2 Simulation

Significance of the individuals’ pathways as well as after adjustment for testing multiple pathways is determined via Monte-Carlo simulations based on genome-wide permutation of case-control status or quantitative trait value. At least 3500 simulations are the minimum requirement to get experiment-wise significant results with the KEGG pathways. Rather then choosing 1000 or 10000 as the number of replicates we recommend 999 or 9999, respectively.
6.3 Selection file PAA

Here is an example of a selection file to perform the PAA with `PATHWAYTEST 1`. The selection files for `PATHWAYTEST 2,3,4,5` are analogous.

```
TPED ./test.tped  // path to the .tped file
TFAM ./test.tfam  // path to the .tfam file
PATHWAYFILE ./KEGG_2.snp_b129.txt  // path to the pathway file
SINGLE_MARKER 1  // Armitage’s trend test
SINGLETOP 25000  // top 25000 single-marker results
PATHWAYANALYSIS 1  // pathway association analysis
PATHWAYTEST 1  // pathway analysis with Fisher score
SIMULATION 999  // number of permutations
OUTPUTNAME ./myproject/test  // specify the output name
END
```

Selection file for the interaction-Ratio (`PATHWAYTEST 6`)

```
TPED ./test.tped  // path to the .tped file
TFAM ./test.tfam  // path to the .tfam file
PATHWAYFILE ./KEGG_2.snp_b129.txt  // path to the pathway file
SINGLE_MARKER 1  // Armitage’s trend test
TWOMARKER 1  // two-marker analysis: 1=yes
TEST 2  // log-linear model, test for genotypic interaction
PATHWAYANALYSIS 1  // pathway association analysis
PATHWAYTEST 6  // pathway analysis with Fisher score
P_INTERRATIO 0.05  // p-value threshold for the interaction pairs
SIMULATION 999  // number of permutations
OUTPUTNAME ./myproject/test  // specify the output name
END
```
Chapter 7

Test for Supra-Multiplicativity of SNP Sets

This test can be used to test for deviation from multiplicativity for SNP sets of size up to 500. It is powerful when risk alleles combine in a risk fortifying way (rather than in the presence of interaction defined by alteration of risk directions in SNP combinations). The test is particular powerful in the presence of models as suggested by Zuk et al. (Zuk et al., 2012). The test is described in detail by Herold et al. (Herold et al., 2013).

These are the keywords needed to test for supra-multiplicativity of SNP sets.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIABILITY</td>
<td>1=SMT, 2=NSMT</td>
</tr>
<tr>
<td>SNP_COVARIATES</td>
<td>rs-numbers, e.g. rs11248850;</td>
</tr>
<tr>
<td>SNP_RISK</td>
<td>risk allele, e.g. A;T;T;G;</td>
</tr>
</tbody>
</table>

LIABILITY 1 conducts a supra-multiplicativity test (SMT). Choose LIABILITY 2 for the novel supra-multiplicativity test (NSMT), an improved version of the original SMT. By implementation of a generalized regression equation, the NSMT avoids multiple testing and provides more sophisticated modeling of amplifying interaction. The keyword SNP_COVARIATES specifies a list of rs numbers. These are the SNPs whose supra-multiplicativity shall be investigated. At least one SNP must be specified, the list can be of arbitrary length, but there are computational constraints for \(n >> 200 \).

The keyword SNP_RISK is optional. By default, the risk alleles are derived from the data. When there is knowledge from outside, risk alleles can directly be specified as A,C,G,T. The letter R indicates that the risk allele shall be derived from the data. When the keyword is used, the number of risk alleles specified has to match the number of snp covariates (SNP_COVARIATES) and the order of the alleles has to be consistent with the order of the SNPs. In the example SNP_RISK A;C;R; the risk allele for rs123 is “A”, the risk allele for rs456 is “C” and the risk allele for rs34567 is derived from the data.

7.1 Selection file and output

```
TPED ./test.tped // path to the tped-File
TFAM ./test.tfam // path to the tfam-File
SINGLE_MARKER 3 // regression test
LIABILITY 1// Test for supra-multiplicativity selected
SNP_COVARIATES rs11248850;rs9929621;rs11645697;rs4786664;// reported SNPs
SNP_RISK A;T;T;G;// risk allele
OUTPUTNAME test // Specify the output name
END
```

The output is written to the file *_Liability.txt. If LIABILITY 1 is chosen, then the decisive p-value is the total p-value which is adjusted for multiple testing. Beyond, the p-values (column p_Value) \(p_k \) refer to allele load thresholds \(k \) and are not corrected for multiple testing.
Chapter 8

Stratified analysis

To perform a stratified analysis we offer clustering and matching methods. Details on the methods can be found in (Lacour et al., 2015). The keywords to employ are

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATIFY_STRUCT</td>
<td>PAIR, GROUP, CLUSTER</td>
</tr>
<tr>
<td>STRATIFY_VALID</td>
<td>VICINITY, CLUSTER</td>
</tr>
<tr>
<td>GROUP_TEST</td>
<td>SQUARE, LINEAR</td>
</tr>
<tr>
<td>MATCHING_CHOICE</td>
<td>example chr4;chr12,12300-16000;</td>
</tr>
<tr>
<td>SIMULATION</td>
<td>integer value e.g. 9999</td>
</tr>
<tr>
<td>SINGLETOP</td>
<td>integer value e.g. 30143</td>
</tr>
<tr>
<td>PRINTTOP</td>
<td>integer value e.g. 30143</td>
</tr>
<tr>
<td>CLUSTER_COVARS</td>
<td>0=off, 1=on</td>
</tr>
</tbody>
</table>

If activated by the keyword STRATIFY_STRUCT, the stratified analysis is be performed on any test, that involves resampling simulations of the phenotype. For resampling simulations the keyword SIMULATION has to be set greater than 0. Also, SINGLETOP and PRINTTOP should be set sufficiently large. The keyword MATCHING_CHOICE restricts population structuring to the stated genetic regions.

The options for the keyword STRATIFY_STRUCT are

- empty (default) no matching methods are employed
- PAIR creates an optimal case-control matching with equal number of cases and controls. Ignores unmatched individuals. Use this only, when you know what you are doing.
- GROUP creates groups with at least one case and one control
- CLUSTER creates clusters (applicable to both CC and QT).

The keyword STRATIFY_VALID defines the validation method for pairwise and groupwise matching.

- CLUSTER perform clustering first, allows pairs/groups only within-cluster. Use this keyword if you expect large-scale population structure.
- VICINITY (default) checks for abundance of possible better matchings. Use this keyword if you expect small-scale population structure.

STRATIFY_VALID is ignored if the CLUSTER attribute is used for the keyword STRATIFY_STRUCT.

The keyword GROUP_TEST calls a modified version of the Cochran-Armitage-Trend (CAT) test, which is generalized for the usage of population structure. It overrides the SINGLEMARKER keyword.

- empty (default) SINGLEMARKER is used
- SQUARE calls the squared Matching Cochran-Armitage-Trend, $MCAT^{(2)}$, test. This test is based on the squared version of the CAT test. The usage of resampling simulations (keyword SIMULATION) is mandatory.
• LINEAR calls the *linear Matching Cochran-Armitage-Trend, MCAT*(1), test. This test is based on the linear version of the CAT test corrected for finite populations. The test is asymptotic: there is no need for resampling simulations, but may be performed optionally.

`CLUSTER_COVARS` produced n=#clusters covariates, and denotes peoples’ cluster affiliation by 0/1. Usable only with tests that consider covariates (e.g. `SINGLEMARKER 3`).
Chapter 9

INTERSNP-RARE: Genome-Wide Rare Variant Analysis

9.1 Introduction

Important note: INTERSNP-RARE requires the preprocessor directive #RARE to be set to 1 in intersnp.cpp before compilation:

```c
#define RARE 1
```

INTERSNP-RARE is an extension build upon INTERSNP’s framework for genome-wide rare variant analysis. Currently, three permutation-based rare variant testing procedures are implemented: Fisher-Rare - FR, based on the Fisher combination test (Fisher, 1925), COLLapsing test - COLL, (Li and Leal, 2008) and the Cumulative Minor Allele Test - CMAT, (Zawistowski et al., 2010). In addition, three regression tests are implemented, REG, which is the "full" regression test, and FRACREG and COLLREG, which are based on ideas laid out in (Morris and Zeggini, 2010). All tests are extended to their variable-threshold counterparts (keyword VT). Whether a SNP is rare is determined by the parameter to the keyword MAFT, which is interpreted as the threshold MAF, for defining "rareness". MAF is calculated from the whole sample, irregardless of individuals’ affection status. In the case of a zero MAF, the SNP in question is homozygous and is not considered to be rare. In the literature, common values for defining rare SNPs are often fixed at 0.01 or 0.05, though this may depend on the particular dataset.

Statistical testing of disease association is conducted on rare variants in physical proximity (“bins”). Thus, a physical position is required for each marker to be analyzed. The choice of a particular binning is not straightforward and has to be chosen taking various properties of the dataset into account. In INTERSNP-RARE, extensive support for bin assignment is provided. Prior to elaborating on the details, it is necessary to fix our terminology.

Bin: a subset of discrete SNPs in physical proximity, taken from the set of all SNPs in a study. The most simple way to define bins is to use a simple counting algorithm from genotype data. Automatic binning can be performed by number of SNPs (BINSIZE_SNP), by number of rare SNPs (BINSIZE_RARE) or by size of the region in base pairs (BINSIZE_DIST). Bins can be also be provided in SetID files.

Interval: a continuous region of a chromosome. Intervals are uniquely defined by a chromosome number, a start and an end position. Intervals may represent features like LD blocks or genes. Intervals are independent of any particular study data and are oblivious to any peculiarities therein. INTERSNP-RARE accepts generic interval files with one interval per row. If an interval file is provided, bins are created by projection of intervals on the genotype data.

Intervals are supplied by an external file (keyword INTERVALFILE). The maximal size for an interval is a whole chromosome. Pseudoautosomal regions and sex chromosomes are ideally treated
as independent chromosomes. Support for overlapping and non-overlapping bins and intervals is provided.
An overview of keywords for controlling rare variant testing are listed in the next section.
9.2 Options

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAFT</td>
<td>0.05</td>
<td>Definition of the threshold MAF used to define "rareness"</td>
</tr>
<tr>
<td>VT</td>
<td>1</td>
<td>1 for variable threshold analysis (VT)</td>
</tr>
<tr>
<td>MAF_ADJUST</td>
<td>1</td>
<td>1 (default): MAF is calculated from expected, (not observed) number of alleles. No effect if SNP missing rate=0.</td>
</tr>
<tr>
<td>BINSIZE_SNP</td>
<td>4000</td>
<td>Number SNPs per bin (rare and common)</td>
</tr>
<tr>
<td>BINSIZE_RARE</td>
<td>50</td>
<td>Number rare SNPs per bin</td>
</tr>
<tr>
<td>BINSIZE_DIST</td>
<td>800000</td>
<td>Physical distance in bp per bin</td>
</tr>
<tr>
<td>RARE_TESTS</td>
<td>REG;FRACREG;COLLREG</td>
<td>List of tests to be conducted. Default: COLL;CMAT;FR</td>
</tr>
<tr>
<td>LAMBDA_ADJUST</td>
<td>1</td>
<td>Correction for genome-wide FR testing</td>
</tr>
<tr>
<td>PRESCREEN</td>
<td>0.0001</td>
<td>Pretest for permutation-based analysis. Eliminates bins below (conservative) threshold before the first permutation</td>
</tr>
<tr>
<td>ADAPTIVE</td>
<td>0.001</td>
<td>Pretest for rare variant analysis using the Wilson confidence interval.</td>
</tr>
<tr>
<td>GENERATE_SETID</td>
<td>1</td>
<td>Skip association analysis, write modified intervals and SetID files.</td>
</tr>
<tr>
<td>SETID</td>
<td>Bins.SetID</td>
<td>File containing intervals in SetID format</td>
</tr>
<tr>
<td>INTERVALFILE</td>
<td>Ensembl_Genes75_hg19.txt</td>
<td>File containing intervals</td>
</tr>
<tr>
<td>INTERVAL_FORMAT</td>
<td>[Semicolon-separated list]</td>
<td>Formatting of the interval file</td>
</tr>
<tr>
<td>HEAD="1";</td>
<td></td>
<td>Number of header lines</td>
</tr>
<tr>
<td>SEPARATOR="\t";</td>
<td></td>
<td>Field separator</td>
</tr>
<tr>
<td>COLUMNS="5";</td>
<td></td>
<td>Number of columns</td>
</tr>
<tr>
<td>CHR="1";</td>
<td></td>
<td>Column with chromosome number</td>
</tr>
<tr>
<td>START="2";</td>
<td></td>
<td>Column with interval start positions</td>
</tr>
<tr>
<td>END="3";</td>
<td></td>
<td>Column of interval end positions</td>
</tr>
<tr>
<td>FEATURE="4";</td>
<td></td>
<td>Column containing "feature"</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>MERGE_INTERVALS</td>
<td>1</td>
<td>1 for merging of overlapping input intervals</td>
</tr>
<tr>
<td>FLANKING</td>
<td>1000</td>
<td>Flanking of intervals in bp</td>
</tr>
<tr>
<td>CONCATENATE INTERVALS</td>
<td>0</td>
<td>Number of consecutive intervals to be concatenated</td>
</tr>
<tr>
<td>CLOSE GAPS</td>
<td>1</td>
<td>For a non-overlapping set of intervals: assign uncovered space to intervals</td>
</tr>
<tr>
<td>MIN_RARE_IN_BIN</td>
<td>5</td>
<td>Filter bins: minimum required number of rare SNPs</td>
</tr>
<tr>
<td>MAX_RARE_IN_BIN</td>
<td>100</td>
<td>Filter bins: maximum allowed number of rare SNPs; bins will be split</td>
</tr>
<tr>
<td>VERBOSE</td>
<td>1</td>
<td>Verbosity level of output. Default: 1</td>
</tr>
<tr>
<td>WEIGHTS</td>
<td>1/SD, BETA;1;25; LOGISTIC;0.07;150;</td>
<td>Weights of variants. Default: all weights are equal to 1.</td>
</tr>
</tbody>
</table>
9.3 Statistical Tests

The keyword `RARE_TESTS` allows to choose tests to be conducted from one or more of the following: FR; CMAT; COLL; REG; FRACREG; COLLREG. The list has to be separated by semicolons. By default, the three permutation tests FR; CMAT; COLL; are selected. Although it is possible to conduct all six tests in one run, the requirements for computing regression tests with permutations are usually too high to be practical, at least on genome-wide scale. We therefore recommend to conduct genome-wide regression testing analytically with a fixed MAF threshold.

9.3.1 FR

The implemented Fisher-Rare test is based on Fisher’s combined probability test. The test statistic is determined by combining the \(N \) single-marker p-values of \(N \) rare variants in a particular bin

\[
T_{FR} = -2 \sum_{i=1}^{N} w_i \log(p_i).
\]

In our implementation, all weights are \(w_j = 1 \) by default (see :TP 9.3.2.1 on custom weights).

For fixed threshold analysis, the p-value is determined from the statistic by permutation of the case-control status (or quantitative trait), while keeping genotype data unchanged.

For independent p-values, the overall p-value may be determined via \(\chi^2 \)-distribution with \(2N \) degrees of freedom. Due to linkage disequilibrium (LD), the \(p_i \) are not independent, which leads to the \(\chi^2 \)-distribution being an anticonservative approximation. However, the \(\chi^2 \)-distribution is useful for finding the optimal rare MAF by raising the threshold frequency and determining the overall p-value with the new set of rare SNPs, and taking the MAF for which the p-value is minimal. The “true” p-value is calculated by permutation (see :TP 9.4).

Setting the parameter of the keyword `LAMBDA_ADJUST` to 1 instructs INTERSNP to normalize singlemarker-\(p_i \) to be normalized by dividing corresponding test statistics by the inflation factor. Use this option only with a large number of SNPs, i.e. in genome-wide association studies.

9.3.2 CMAT

CMAT, the cumulative minor allele test (Zawistowski et al., 2010) utilizes the weighted sum (with weights \(w_j \)) over \(F \) minor allele frequencies of rare variants in \(N_A \) cases and \(N_U \) controls

\[
T_{CMAT} = \frac{N_A + N_U}{2N_A N_U \sum_j w_j} \times \frac{(m_A M_U - m_U M_A)^2}{(m_A + m_U)(M_A + M_U)},
\]

where \(m_A, m_U, M_A \) and \(M_U \) are weighted minor and major allele counts in affected and unaffected individuals

\[
m_A = \sum_{i=1}^{N_A} \sum_{j=1}^{F} w_j X_{ij} \\
m_U = \sum_{i=1}^{N_U} \sum_{j=1}^{F} w_j Y_{ij} \\
M_A = \sum_{i=1}^{N_A} \sum_{j=1}^{F} w_j (2 - X_{ij}) \\
M_U = \sum_{i=1}^{N_U} \sum_{j=1}^{F} w_j (2 - Y_{ij}).
\]
Here, X_{ij} and Y_{ij} are the number of minor alleles at the j^{th} variant position for the i^{th} case and control, respectively.

The p-values for the CMAT test are determined by permutation. It is possible to conduct a modified CMAT test with one categorical covariate (Zawistowski et al., 2010).

9.3.2.1 Weights

The weights (default: $w_i = 1$) can be used in non-collapsing permutation tests to weight alleles by a pre-determined scheme that mirrors our estimation of their risk.

Currently, three weighting schemes are supported (see also Wu et al. (2011) and references therein).

- **1/SD.** The weights are reciprocal to the standard deviation of allele counts
 \[w_i = \frac{1}{\sqrt{MAF_i(1 - MAF_i)}}. \]

- **BETA;a;b:** The weights are proportional to the Beta distribution (default: $a = 1$, $b = 25$)
 \[w_i = MAF_i^{a-1}(1 - MAF_i)^{b-1}. \]

- **LOGISTIC;a;b:** Instead of strongly upweighting rare variants, logistic weights are rather a "soft threshold" alternative to a fixed MAF threshold (default: $a = 0.07$, $b = 150$)
 \[w_i = \frac{1}{1 + e^{(MAF_i - a)b}}. \]

The weights of rare variants are approximately 1 and for common variants 0.

9.3.3 COLL

The collapsing test COLL (Li and Leal, 2008) dichotomizes individuals by the presence of any rare variant in a given bin

\[T_{COLL} = \frac{(N_A + N_U) \times (X N_U - Y N_A)^2}{N_A N_U (X + Y)(N_A + N_U - X - Y)}, \]

where X is the number of cases carrying a rare variant:

\[X = \sum_{i=1}^{N_A} X_i. \]

X_i are indicator variables for the i^{th} case:

\[X_i = \begin{cases} 1 & \text{if } w_j X_{ij} > 0 \text{ for any } 1 \leq j \leq F \\ 0 & \text{otherwise,} \end{cases} \]

and analogous definitions of Y, Y_i for controls.

Alternatively, the test statistic can be expressed as

\[T_{COLL} = \frac{(N_A + N_U) \left(N_A^C N_U - N_U^C N_A \right)^2}{N_A N_U (N_A^C + N_U^C) \left(N_A + N_U - N_A^C - N_U^C \right)} \]

The p-values of the COLL test are determined by the χ^2-distribution with one degree of freedom in case of a fixed threshold and by permutation in case of a variable threshold.
9.3.3.1 Odds Ratios

Both variable and fixed threshold analyses of COLL and CMAT return "odds ratios" based on their respective contingency tables. They are useful for determining the direction of effect.

9.3.4 REG

REG is the full regression test conducted on the set of rare variants. Logistic and linear regression are used for quantitative and binary phenotypes, respectively. In the logistic regression, the probability to be a case is modelled as:

\[
\logit(p) = \beta^T b + \gamma^T g,
\]

for every individual, with \(\logit(p) = \log(p/(1-p)) \), and \(\beta \) and \(\gamma \) vectors of regression coefficients to be estimated. The covariate vector \(b = \{1, b_1, \ldots, b_k\} \) encodes covariate quantities of the individual to be included in the model, while \(g \) is the vector of genotypes of the individual. In the log-additive model, the genotypes are coded as -1, 0 and 1 for the three cases when the major allele is homozygous, the genotype is heterozygous or minor allele is homozygous. The vector of covariate coefficients \(\beta \) consists of the intercept parameter \(\beta_0 \) and \(k \) covariate coefficients \(\{\beta_1, \ldots, \beta_k\} \), while \(\gamma \) estimates the risk contribution of each genotype. Maximum likelihood estimation of the null model with \(H_0 : \gamma = 0 \) together with the model where \(\beta \) is unconstrained yields a likelihood ratio test with \(m \) degrees of freedom.

REG and FR are both oblivious to the direction of effect of individual variants. This property sets them apart from other tests which are commonly classified as "burden" tests. While burden tests are in general expected to be more powerful when most of rare alleles in a bin are associated with either affection status, they lose power when both protective and damaging effects are present. Two further burden regression tests, FRACREG and COLLREG, were described in Morris and Zeggini (2010) for the linear regression case. The main idea is to combine rare genotypes from a bin into one variable and to fit a single regression coefficient in a regression model. Therefore, FRACREG and COLLREG incorporate to an extent the idea of CMAT and COLL into a regression framework.

9.3.5 FRACREG

FRACREG estimates the coefficient \(\lambda \) with the trait modelled as:

\[
\logit(p) = \beta^T b + \lambda \frac{r}{n}
\]

(9.2)

Here, \(r \) is the count of genotypes of an individual containing at least one minor allele. The ratio \(\frac{r}{n} \) is the accumulated genetic burden with equal contribution from each genotype containing one or two minor alleles. The statistical test is conducted by comparing the null model \(H_0 : \lambda = 0 \) to \(H_1 : \lambda \neq 0 \).

9.3.6 COLLREG

The COLLREG is identical to FRACREG, up to the burden function. COLLREG is a regression model over collapsed variants. As in FRACREG, one coefficient \(\lambda \) is estimated. An individual is assumed to carry the full genetic burden when at least one rare allele is present:

\[
\logit(p) = \beta^T b + \lambda I(g)
\]

(9.3)

The indicator function \(I(g) \) equals 1 if an individual has at least one rare allele in the region of interest and 0 otherwise. The COLL and the COLLREG tests are members of the family of collapsing methods.
9.4 Variable Threshold

The Variable Threshold (VT) analysis is activated using the keyword VT. The extension to the variable threshold model for COLL and CMAT tests is motivated by the principle described in (Price et al., 2010).

COLL, CMAT: with \(N_{SIM} \) permutations, calculate \(T_{max}^j \) for each value of \(\text{MAF}_i \leq \text{MAF}_T \) contained for each permutation \(j \). The proportion of those \(T_{max}^j \) that are larger than the non-permuted \(T_{max}^0 \) is used to determine the corresponding p-value:

\[
\text{p}_{\text{COLL,CMAT}} = \frac{\# \{ T_{max}^j > T_{max}^0 \}}{N_{SIM}}. \tag{9.4}
\]

FR: The VT approach requires a modification in case of FR test. Since the test statistic depends on a different number of p-values at different \(\text{MAF}_i \) levels, they can not be directly compared. \(T_{FR,MAF_i} \) is also monotonically increasing with the value of MAF. The test statistic is thus not comparable in variable threshold mode. A multiparametric function is required to map different \(T_{FR} \) on an interval taking the number of variants into account, that allows a comparison operator. One of the suitable functions that maps \(T_{FR} \) and allows comparison is the \(\chi^2 \) distribution with \(2m \) degrees of freedom. Although due to LD the distribution is, in general, anticonservative, it can be used since the absolute \(p_{\text{Est}} \) enter the calculation for being used for comparison ("<" and "?>"), at different MAF levels only.

\[
T_{FR}^i = p \left(\text{the } \chi^2-\text{distribution with } 2N_{df} \right) \text{ instead of } T_{FR} \text{ is used to obtain optimal threshold. The p-value is determined by calculating the fraction of smaller minimal test statistics } T_{FR}^i \text{ across permutations and MAF levels:}
\]

\[
\text{p}_{FR} = \frac{\# \{ T_{min}^j < T_{min}^0 \}}{N_{SIM}}. \tag{9.5}
\]

The FR method is therefore similar to COLL and CMAT VT-methods, except that maximal test statistics are compared at different MAF levels. Small test statistics are considered to be more improbable, which leads to a change of sign in Eq. (equation9.5).

In a straightforward extension, the VT method for regression tests utilizes the regression p-values at each MAF level:

\[
\text{p}_{\text{REG,FRACREG,COLLREG}} = \frac{\# \{ p_{min}^j < p_{min}^0 \}}{N_{SIM}}. \tag{9.6}
\]

For rare regression tests, the VT method is, in general, not recommended for genome-wide analysis due to relatively long running times.

9.5 Rare Pretests

In a permutation framework, computational time and hardware requirements can be significantly reduced by conducting the full number of permutations only for bins that have a chance to come close to the significance level. This can achieved by two implemented methods.

PRESCREEN takes place before any permutations are conducted. We use the fact that the p-values obtained from test statistics are either asymptotically exact or anticonservative due to LD. Choosing a suitable passing threshold eliminates the majority of tests to be conducted.

To reduce computational time even further, we offer an implementation of an adaptive pretest. The keyword ADAPTIVE takes a floating point number equal to the threshold p-value for passing the pretest. Confidence intervals for permutation p-values are calculated using the Wilson score method (Wilson, 1927):

\[
CI^\pm = \left(1 + \frac{z_{\alpha/2}^2}{n} \right)^{-1} \left[p \pm \frac{z_{\alpha/2}^2}{2n} \pm z_{\alpha/2} \sqrt{\frac{1}{n} p \left(1 - p \right) + \frac{z_{\alpha/2}^2}{4n^2}} \right]. \tag{9.7}
\]
where $z_{\alpha/2} = 1.96$ for the 95% confidence interval. The Wilson method performs well even for small values and is known to be more accurate for binomial proportions than the commonly used normal approximation interval (Wald interval) (Agresti and Coull, 1998).

The passing condition satisfied if the lower bound of the confidence interval is below the value passed to the ADAPTIVE keyword. After each simulation in which the permuted p-value is smaller (or test statistic larger) than the original p-value (test statistic), each window and each individual test is checked for the passing condition.

If the passing conditions are satisfied after the whole set of permutations, the p-value will be marked with a plus sign in the output file.

9.6 Binning Methods

9.6.1 Count-based Binning

The most simple binning methods determine bins directly from the data, by number of contained variants (BINSIZE_SNP), rare variants (BINSIZE_RARE) or by size of the region in base pairs (BINSIZE_DIST).

9.6.2 User-Supplied Intervals

In addition to algorithmic binning procedures, extensive functionality for generating and modifying bins created from user-supplied intervals is provided. Bins based on functional classes or statistical characteristics can be generated from a multitude of sources: LD intervals, conserved elements, gene annotation files and more. This set of features is also helpful for validating bins in a different dataset.

Intervals are supplied by the user in a file, one interval per line, by keyword INTERVALFILE. Obviously, INTERVALFILE and the three algorithmic binning methods are mutually exclusive.

We provide an interval file (Ensembl_Genes75_hg19.txt) based on a list of coding genes imported from Ensembl using BioMart (http://www.ensembl.org/biomart/martview). The file was created using attributes "Chromosome Name", "Gene Start (bp)", "Gene End (bp)", "Associated Gene Name", "Description", and exported in the *.tsv format. The resulting file was sorted with respect to chromosome name and gene start.

The formatting of the interval file is defined in a string INTERVALFILE_FORMAT. Possible arguments are HEAD, COLUMNS, CHR, START and END, which give the overall number of lines in the header, number of columns, and the number columns containing start and end positions, chromosome names and possibly a column containing a descriptor of the feature in the file. Columns are counted starting from one. INTERSNP accepts different chromosome naming conventions, for instance "CHR26", "chrMT", "M" will be recognized as chromosome 26.

Two additional fields from an interval file can be specified by the user, first of which is FEATURE. A feature is handled as a character string and serves the purpose of tracking intervals more easily. A feature might be a gene name or name of an LD block. The feature column is carried all the way through the calculation and will be appended to the output file. In case that intervals undergo modification, the feature column is modified as well. For instance, when consecutive fields are merged or concatenated, their respective features are put in one field. In addition, SEP defines the field separator. Currently, tab ("\t"), space ("SPACE") and comma (",") are supported as field separators.

The default interval file format string is compatible with the provided gene interval file Ensembl_Genes75_hg19.txt:

```
HEAD=0;SEPARATOR="\t";COLUMNS=4;CHR=1;START=2;END=3
```
9.6.3 Interval Modification

9.6.3.1 Merging of Input Intervals

In case that some of the intervals from the input file are overlapping, setting MERGE_INTERVALS to 1 will instruct INTERSNP to merge them. In case that intervals have identical coordinates, the default behaviour is to dismiss all but the first of these intervals.

9.6.3.2 Flanking

Providing a parameter to FLANKING will instruct INTERSNP to extend intervals in both directions by that many base pairs.

9.6.3.3 Close Gaps

If the intervals do not cover the genome in a continuous way, some of the markers in a dataset may be found in the space between intervals and will be dismissed from rare variant analysis. If the provided intervals are non-overlapping or have been merged, this problem can be countered by setting CLOSE_GAPS to 1. The space in between intervals will be divided in half and each part will be assigned to the nearest interval.

9.6.3.4 Concatenating Intervals

In case that the provided intervals are found to be too small, one can set CONCATENATE_INTERVALS to the number of consecutive intervals to be concatenated into one interval.

9.6.4 Size of Bins: Quality Control

9.6.4.1 Filter Small Bins

Some bins may cover only few rare variants, especially when intervals are small and data sparse. In that case, INTERSNP will unnecessarily process useless bins. In addition, the number of bins will reduce power due to correction for multiple testing. This can be countered by setting MIN_RARE_IN_BIN to the minimum number of rare variants per bin. Bins not satisfying this condition will be simply dismissed.

9.6.4.2 Maximum Number of Rare Variants

Some bins may cover hundreds or thousands of rare variants. It is advised to set a maximal number of rare variants per bin using the keyword MAX_RARE_IN_BIN to prevent disproportionately high computational burden, in particular when using variable-threshold models.

Bins that are found to contain more rare SNPs than the given limit will be split in bins containing the same number of rare variants, if possible.

9.7 Imputation of Minor Allele Frequencies for Missing Genotypes

MAF_ADJUST is a keyword that controls a simple recalculation of MAFs in SNPs with a nonzero missing rate. The default value of the parameter is 1. The number of minor allele thresholds under consideration may be large if missing data is present. With stringent missing rate quality control, we use the approximation for the minor allele frequency:

$$MAF = \frac{\#(\text{Minor alleles})}{2(N - M)} \approx \frac{\#(\text{Minor alleles})}{2N}$$ \hspace{1cm} (9.8)
where \(N \) is the number of individuals and \(M \) the number of missing genotypes. Note that this assignment is made only to reduce the number of MAF thresholds that are investigated, but that it does not affect the computation of the test statistics we use, for which we always use the actual genotype information.

9.8 Output

9.8.1 Association Testing Results: *Rare.txt

Test results and additional information is written to the *Rare.txt file, which is a fully compatible interval file.

- BinNr: bins are counted according to their start positions (with \texttt{VERBOSE 2})
- SNPs: the number of variants in bin, rare or common (with \texttt{VERBOSE 2})
- chr: chromosome number
- start, end: bin boundaries in base pair positions
- from_SNP, to_SNP: bin boundaries in variant counts (with \texttt{VERBOSE 2})
- from_rare_SNP_Nr, to_rare_SNP_Nr: bin boundaries in rare variant counts (with \texttt{VERBOSE 2})
- nRV: the number of rare variants with \(\text{MAF} \leq \text{MAF}_T \)
- rarefreq\[FR|CMAT|COLL|REG|FRACREG|COLLREG\]: the optimal frequency from VT analysis
- nRare\[FR|CMAT|COLL|REG|FRACREG|COLLREG\]: the number of variants with \(\text{MAF} \leq \text{MAF}_T \)
- p\[FR|CMAT|COLL|REG|FRACREG|COLLREG\]: the p-value
- p\[FR|CMAT|COLL|REG|FRACREG|COLLREG\]_Corr: the Bonferroni-corrected p-value (with \texttt{VERBOSE 2})
- CI\[FR|CMAT|COLL|REG|FRACREG|COLLREG\]: Wilson confidence interval
- nPerm\[FR|CMAT|COLL|REG|FRACREG|COLLREG\] if \texttt{ADAPTIVE} is set to 1, the number of permutation conducted for the respective test.
- OR\[COLL|CMAT\]: “odds ratios” based on contingency tables
- FEATURE: optional feature column from interval file

9.8.2 Modified Interval File: *_modified.txt

The quality-controlled, modified, sorted interval file (\texttt{INTERVALFILE}) is written to a new interval file in the working directory. If \texttt{GENERATE_SETID} was selected, no analysis will not be performed. Instead, a SetID file will be generated that can be used for subsequent analysis with INTERSNP. The SetID file has the advantage that only SNPs relevant for the analysis will be loaded into memory, resulting in an overall speedup of the analysis.
Bibliography

